270 research outputs found

    Resolved Spectroscopy of the Narrow-Line Region in NGC 1068: Kinematics of the Ionized Gas

    Full text link
    We have determined the radial velocities of the [O III] emitting gas in the inner narrow-line region (NLR) of the Seyfert 2 galaxy NGC 1068, along a slit at position angle of 202 degrees, from STIS observations at a spatial resolution of 0.1 arcsec and a spectral resolving power of approximately 1000. We use these data to investigate the kinematics of the NLR within 6 arcsec (430 pc) of the nucleus. The emission-line knots show evidence for radial acceleration, to a projected angular distance of 1.7 arcsec in most cases, followed by deceleration that approaches the systemic velocity at a projected distance of about 4 arcsec. We find that a simple kinematic model of biconical radial outflow can match the general trend of observed radial velocities. In this model, the emitting material is evacuated along the bicone axis, and the axis is inclined 5 degrees out of the plane of the sky. The acceleration of the emission-line clouds provides support for dynamical models that invoke radiation and/or wind pressure. We suggest that the deceleration of the clouds is due to their collision with a patchy and anistropically distributed ambient medium.Comment: 18 pages, Latex, includes 3 figures in postscript, to appear in the Astrophysical Journal Letter

    Physical Conditions in the Inner Narrow-Line Region of the Seyfert 2 Galaxy NGC 1068

    Get PDF
    The physical conditions in the inner narrow line region (NLR) of the Seyfert 2 galaxy, NGC 1068, are examined using ultraviolet and optical spectra and photoionization models. The spectra are Hubble Space Telescope (HST) Harchive data obtained with the Faint Object Spectrograph (FOS). We selected spectra of four regions, taken through the 0.3" FOS aperture, covering the full FOS 1200A to 6800A waveband. Each region is approximately 20 pc in extent, and all are within 100 pc of the apparent nucleus of NGC 1068. The spectra show similar emission-line ratios from wide range of ionization states for the most abundant elements. After extensive photoionization modeling, we interpret this result as an indication that each region includes a range of gas densities, which we included in the models as separate components. Supersolar abundances were required for several elements to fit the observed emission line ratios. Dust was included in the models but apparently dust to gas fraction varies within these regions. The low ionization lines in these spectra can be best explained as arising in gas that is partially shielded from the ionizing continuum. Although the predicted line ratios from the photoionization models provide a good fit to the observed ratios, it is apparent that the model predictions of electron temperatures in the ionized gas are too low. We interpret this as an indication of additional collisional heating due to shocks and/or energetic particles associated with the radio jet that traverses the NLR of NGC 1068. The density structure within each region may also be the result of compression by the jet.Comment: 38 pages, Latex, includes 5 figures (postscript), to appear in Ap

    Resolved Spectroscopy of the Narrow-Line Region in NGC 1068. I. The Nature of the Continuum Emission

    Get PDF
    We present the first long-slit spectra of the Seyfert 2 galaxy NGC 1068 obtained by the Space Telescope Imaging Spectrograph (STIS); the spectra cover the wavelength range 1150 - 10,270 Angstroms at a spatial resolution of 0.05 - 0.1 arcsec and a spectral resolving power of 1000. In this first paper, we concentrate on the far-UV to near-IR continuum emission from the continuum ``hot spot'' and surrounding regions extending out to +/- 6 arcsec (+/-432 pc) at a position angle of 202 degrees In addition to the broad emission lines detected by spectropolarimetry, the hot spot shows the ``little blue bump'' in the 2000 - 4000 Ang. range, which is due to Fe II and Balmer continuum emission. The continuum shape of the hot spot is indistinguishable from that of NGC 4151 and other Seyfert 1 galaxies. Thus, the hot spot is reflected emission from the hidden nucleus, due to electron scattering (as opposed to wavelength-dependent dust scattering). The hot spot is ~0.3 arcsec in extent and accounts for 20% of the scattered light in the inner 500 pc. We are able to deconvolve the extended continuum emission in this region into two components: electron-scattered light from the hidden nucleus (which dominates in the UV) and stellar light (which dominates in the optical and near-IR). The scattered light is heavily concentrated towards the hot spot, is stronger in the northeast, and is enhanced in regions of strong narrow-line emission. The stellar component is more extended, concentrated southwest of the hot spot, dominated by an old (> 2 x 10 Gyr) stellar population, and includes a nuclear stellar cluster which is ~200 pc in extent.Comment: 32 pages, Latex, includes 11 figures (postscript), to appear in the Astrophysical Journa

    Comparison of Quantum and Classical Local-field Effects on Two-Level Atoms in a Dielectric

    Full text link
    The macroscopic quantum theory of the electromagnetic field in a dielectric medium interacting with a dense collection of embedded two-level atoms fails to reproduce a result that is obtained from an application of the classical Lorentz local-field condition. Specifically, macroscopic quantum electrodynamics predicts that the Lorentz redshift of the resonance frequency of the atoms will be enhanced by a factor of the refractive index n of the host medium. However, an enhancement factor of (n*n+2)/3 is derived using the Bloembergen procedure in which the classical Lorentz local-field condition is applied to the optical Bloch equations. Both derivations are short and uncomplicated and are based on well-established physical theories, yet lead to contradictory results. Microscopic quantum electrodynamics confirms the classical local-field-based results. Then the application of macroscopic quantum electrodynamic theory to embedded atoms is proved false by a specific example in which both the correspondence principle and microscopic theory of quantum electrodynamics are violated.Comment: Published version with rewritten abstract and introductio

    Evidence for a Physically Compact Narrow-Line Region in the Seyfert 1 Galaxy NGC 5548

    Get PDF
    We have combined HST/FOS and ground-based spectra of the Seyfert 1 galaxy NGC 5548 to study the narrow emission lines over the 1200 -- 10,000 angstrom region. All of the spectra were obtained when the broad emission line and continuum fluxes were at an historic low level, allowing us to accurately determine the contribution of the narrow-line region (NLR) to the emission lines. We have generated multicomponent photoionization models to investigate the relative strength of the high ionization lines compared to those in Seyfert 2 galaxies, and the weakness of the narrow Mg II 2800 line. We present evidence for a high ionization component of NLR gas that is very close to the nucleus (~1 pc). This component must be optically thin to ionizing radiation at the Lyman edge (tau = 2.5) to avoid producing [O I] and Mg II in a partially ionized zone. The very high ionization lines (N V, [Ne V], [Fe VII], [Fe X]) are stronger than the predictions of our standard model, and we show that this may be due to supersolar abundances and/or a ``blue bump'' in the extreme ultraviolet (although recent observations do not support the latter). An outer component of NLR gas (at only ~70 pc from the continuum source) is needed to produce the low ionization lines. We show that the outer component may contain dust, which further reduces the Mg II flux by depletion and by absorption of the resonance photons after multiple scatterings. We show that the majority of the emission in the NLR of NGC 5548 must arise within about ~70 pc from the nucleus. Thus, the NLR in this Seyfert 1 galaxy is very physically compact, compared to the typical NLR in Seyfert 2 galaxies.Comment: 38 pages, Latex, includes 2 figures (postscript), to appear in Ap
    corecore